- **1** Methylbenzene, C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>, is an aromatic hydrocarbon and is used widely as a solvent. It is readily nitrated and it can form mono-, di-, or tri-nitromethylbenzenes.
  - (a) 4-Nitromethylbenzene can be formed by the nitration of methylbenzene.

Outline the mechanism for the formation of 4-nitromethylbenzene from methylbenzene using  $NO_2^+$  as the electrophile.

[4]

(b) There are six possible structural isomers of  $\mathrm{CH_3C_6H_3(NO_2)_2}$  that are dinitromethylbenzenes. Four of the isomers are shown below.

Draw the structures of the other two isomers in the boxes provided.

| CH <sub>3</sub> | CH <sub>3</sub> | CH <sub>3</sub> |
|-----------------|-----------------|-----------------|
| NO <sub>2</sub> | $O_2N$ $NO_2$   |                 |
|                 |                 |                 |
| NO <sub>2</sub> |                 | $O_2N$ $NO_2$   |
| isomer 1        | isomer 2        | isomer 3        |
| CH <sub>3</sub> |                 |                 |
| NO <sub>2</sub> |                 |                 |
|                 |                 |                 |
|                 |                 |                 |
| NO <sub>2</sub> |                 |                 |
| isomer 4        | isomer 5        | isomer 6        |

**(c)** A research chemist investigated whether dinitromethylbenzenes could be used in the manufacture of fibres.

The chemist devised a **two**-stage synthesis of the condensation polymer below, starting from one of the isomers in part **(b)**.

For the **first** stage of the synthesis,

- Which of the isomers 1, 2, 3 or 4 could be used?
- Identify the product formed and state suitable reagents.

State the type of condensation polymer formed.

Write an equation.

For the **second** stage of the synthesis,

 Suggest an organic compound that could react with the organic product from the first stage to form the polymer.

| re' |
|-----|

[Total: 12]

|    |      | ist was investigating the reactions of benzene, phenol and cyclohexene with bromine. Ind that they all reacted with bromine but under different conditions. |
|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a | -    | e chemist found that when benzene reacts with bromine, a halogen carrier is required as a talyst.                                                           |
|    |      | rite an equation for this reaction.  u do <b>not</b> need to show the halogen carrier in your equation.                                                     |
|    |      |                                                                                                                                                             |
|    |      |                                                                                                                                                             |
|    |      | [1]                                                                                                                                                         |
| (k | •    | e chemist also found that when phenol or cyclohexene reacts with bromine, a haloger rrier is <b>not</b> required.                                           |
|    | (i)  | The chemist observed that bromine decolourises when it reacts with phenol.                                                                                  |
|    |      | What other observation would she have made?                                                                                                                 |
|    |      | Draw the structure of the organic product formed.                                                                                                           |
|    |      | Observation                                                                                                                                                 |
|    |      | Organic product:                                                                                                                                            |
|    |      |                                                                                                                                                             |
|    |      |                                                                                                                                                             |
|    |      |                                                                                                                                                             |
|    |      |                                                                                                                                                             |
|    |      | [2]                                                                                                                                                         |
|    | (ii) | Cyclohexene also decolourises bromine.                                                                                                                      |
|    |      | Name the organic product formed.                                                                                                                            |
|    |      | [1]                                                                                                                                                         |
|    |      |                                                                                                                                                             |

2

| (iii) | Explain the relative resistance to bromination of benzene compared to phenol and compared to cyclohexene. |
|-------|-----------------------------------------------------------------------------------------------------------|
|       | In your answer, you should use appropriate technical terms, spelt correctly.                              |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       |                                                                                                           |
|       | [5]                                                                                                       |
|       |                                                                                                           |

**(c)** Compound **A**, shown below, is being considered as an azo dye by a chemical company. A chemist planned a two-stage synthesis of compound **A** starting from an aromatic amine.

$$H_3C$$
  $N$   $OH$ 

compound A

The aromatic amine is first converted into a diazonium ion.

- Draw the displayed formula of the aromatic amine **and** of the diazonium ion.
- State the reagents and conditions for each stage in the synthesis of compound A from an aromatic amine.

| <br> | <br> | <br> |     |
|------|------|------|-----|
|      |      |      | [5] |

[Total: 14]

| <b>C</b> nei | below.                                                                                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | structure A structure B                                                                                                                              |
| (a) (i)      | Describe, with the aid of suitable diagrams showing orbital overlap, the difference in bonding between structure ${\bf A}$ and structure ${\bf B}$ . |
|              | In your answer, you should use appropriate technical terms, spelled correctly.                                                                       |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              |                                                                                                                                                      |
|              | [4]                                                                                                                                                  |

(ii) The table below shows the enthalpy changes for the reactions of cyclohexene,  $C_6H_{10}$ , and benzene,  $C_6H_6$ , with hydrogen.

| reaction                                | enthalpy change/kJ mol <sup>-1</sup> |
|-----------------------------------------|--------------------------------------|
| $C_6H_{10} + H_2 \rightarrow C_6H_{12}$ | -119                                 |
| $C_6H_6 + 3H_2 \rightarrow C_6H_{12}$   | -208                                 |

Using this information, suggest and explain whether structure  ${\bf A}$  or structure  ${\bf B}$  is a better representation of benzene.

101

**(b)** Benzene compounds can undergo nucleophilic substitution reactions.

Add curly arrows to the diagram below to show the two-step mechanism of  $C_6H_5N_2^+$  with  $F^-$ .

(c) Benzene can react with halogenoalkanes in the same way as with bromine, as shown in reaction 1 below.

Write an equation to show the formation of the electrophile that reacts with benzene in reaction 1.

[2]

- (d) The types of reaction in (b) and (c) can be used to synthesise compound D, as shown in the flowchart below.
  - (i) Complete the boxes below to suggest formulae for the reactants involved in the synthesis of compound D.
     Give structures for organic compounds.



(ii) In a synthesis of compound **D** from 1,3-diaminobenzene shown in the flowchart, 1.73 g of compound **D** was prepared. These structures have been repeated below:

The overall percentage yield of compound **D** was 40.0%.

 $M_r$  of compound **D** = 346.0

Calculate the mass of 1,3-diaminobenzene needed for this synthesis.

| (iii) | Compound $\bf D$ has been developed for possible use as a drug to treat heart conditions. When compound $\bf D$ , prepared in this synthesis, was given to patients, only 25% of the dose was effective in treating their heart conditions. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Explain why only 25% of the dose was effective. Suggest how the synthesis of compound <b>D</b> might be changed to make the dose more effective.                                                                                            |
|       |                                                                                                                                                                                                                                             |
|       |                                                                                                                                                                                                                                             |
|       |                                                                                                                                                                                                                                             |
|       |                                                                                                                                                                                                                                             |
|       | [3]                                                                                                                                                                                                                                         |
|       | [Total: 18]                                                                                                                                                                                                                                 |